Recursive Neural Networks and Graphs: Dealing with Cycles
نویسندگان
چکیده
Recursive neural networks are a powerful tool for processing structured data. According to the recursive learning paradigm, the input information consists of directed positional acyclic graphs (DPAGs). In fact, recursive networks are fed following the partial order defined by the links of the graph. Unfortunately, the hypothesis of processing DPAGs is sometimes too restrictive, being the nature of some real–world problems intrinsically cyclic. In this paper, the methodology proposed in [1, 2] to process cyclic directed graphs is tested on some interesting problems in the field of structural pattern recognition. Such preliminary experimentation shows very promising results.
منابع مشابه
A self-organizing map for adaptive processing of structured data
Recent developments in the area of neural networks produced models capable of dealing with structured data. Here, we propose the first fully unsupervised model, namely an extension of traditional self-organizing maps (SOMs), for the processing of labeled directed acyclic graphs (DAGs). The extension is obtained by using the unfolding procedure adopted in recurrent and recursive neural networks,...
متن کاملProcessing directed acyclic graphs with recursive neural networks
Recursive neural networks are conceived for processing graphs and extend the well-known recurrent model for processing sequences. In Frasconi et al. (1998), recursive neural networks can deal only with directed ordered acyclic graphs (DOAGs), in which the children of any given node are ordered. While this assumption is reasonable in some applications, it introduces unnecessary constraints in ot...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملEffect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملRock Brittleness Prediction Using Geomechanical Properties of Hamekasi Limestone: Regression and Artificial Neural Networks Analysis
The cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. Therefore, this paper attempts to investigate the Hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. The freeze–thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. The geo mechanical properties and brittl...
متن کامل